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Focus On:

» Characteristics relevant to separation of used
nuclear reactor fuel into its constituent parts:
nuclear fuel reprocessing

* Fuels most relevant to the U.S. and separations

 Civilian nuclear power



Outline
 Metal clad fuels: oxide and variants

— Description and fabrication

— Oxide fuels are used in many reactors

* Light-water reactors (LWRs)
— Boiling Water Reactors (BWRs)
— Pressurized Water Reactors (PWRs)

 Fast Reactors cooled with Na, K, Bi, Pb, He
* Graphite-based fuels

— Description of fuels and how they are fabricated

* High-Temperature Gas-Cooled Reactors (HTGRs)
— Also called Very-High-Temperature Reactors (VHTRS)

* Pebble-Bed Modular (Gas Cooled) Reactor (PBMR)
« Spent fuel characteristics



Metal-Clad Fuels



Pressurized Water Reactor (PWR)

Dimensions: square, H=4.1m, 21cm x 21 cm

Weight: 460 kgU, 520 kg UO,, 135 kg hardware

— Hardware mostly Zircaloy (Zr with Sn, Fe, Cr)
— Grid spacers: Zircaloy, Inconel, stainless steel
— End pieces: Stainless steel, Inconel

Fuel element array: 14 x14to 17 x 17
Fuel element size: 1 cm OD, H=3.9m
Enrichment: 3-5%

May have separate burnable poison rods
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Pressurized Water Reactor

Pressurized-Water
Fuel Assembly




Boiling Water Reactor (BWR)

Dimensions: square, H=4.5m, 14 cm x 14 cm

Weight: 180 kgU, 210 kg UO,,, 110 kg hardware

— Hardware mostly Zircaloy (Zr with Sn, Fe, Cr)
— Grid spacers: Zircaloy

— Channel (aka shroud): Zircaloy

— End pieces: Stainless steel

Fuel element array: 8 x 8
Fuel element size: 1.25 cm OD, H=4.1m
Enrichment; 2.5-4.5%

May have Gd in some rods and variable
enrichment in 3-D



Boiling Water Reactor
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PWR and BWR Fuel Variants
Advanced Cladding

— Zirlo (Zr-Nb alloy) and Duplex (layered) for PWRs
— Tweak Zircaloy composition for BWRs

Moving to more smaller elements

Mixed-oxide (MOX) fuel
— U- 5-8% Pu
 Already being done in US (weapons Pu) and elsewhere

— Mixed actinides from advanced reprocessing
* U-Np-Pu: modest extension of U-Pu fuel technology
« Am-Cm: a challenge, probably requires targets

More PWR fuel gradation and burnable poisons
Thorium oxide fuel "’



Fast Breeder Reactor
Dimensions: hexagonal, H=4-5.5m, W (flats)=
10-20 cm; HM height ~2m
Weight: ~60 kgHM, ~65 kg MOX, ~135 kg
hardware (core plus axial blanket)

— Hardware: Stainless steel

— Mostly wire wrap for pin spacing

Fuel element array: 200-300 pins

Fuel element size: 0.6-0.9 cm OD, H= 4-5m
Enrichment: 15-30% Pu

Blanket: All depleted UO,
— Fewer, larger diameter elements

11



Fast Reactor Fuel Assembly

Inner Wire 0.0552 Dia.
Outer Wire 0.0247 Dia.

12" Pitch

Fuel Rod 0.300 Dia.
217 Reqd

5617"
Hex Wrapper Tube
0.140" Wall

Section A-A

12



Fast Reactor Fuel Variants

* Designs not settled: considerable variation in
number of elements, dimensions, and weights
possible

* Reduce breeding/conversion ratio to achieve
net destruction of transuranics

— Eliminate fertile blankets in favor of non-fertile
neutron reflectors (e.q., stainless steel)

— Inert matrix (e.g., ZrO,) fuel
e Carbide, nitride, or metal fuel instead of oxide
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Metal-Clad Fuel Fabrication



UO, Fuel Fabrication
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UO, Fuel Fabrication
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UO, Fuel Fabrication
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UO, Fuel Fabrication

Machining facility

Material
cutting

Manufacture
of components

Welding} of bare
end-fitting

Machining
of bare
end-fitting

Plug

assembly

i)
g

Electron
beam welding

18



UO, Fuel Fabrication
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MOX Fuel Fabrication

* The same as UO, fuel manufacture however....

— Need to make sure the oxides are very
homogenous and have required proportions

« MOX fuel fabrication from powder usually dilutes a high-
concentration “master blend” to the proper Pu enrichment

* Mixed-oxide (MOX): mixtures of actinide oxides
— Conventionally, U-Pu
— Advanced: U-Pu-Np, Am-Cm, combinations

« Conventional MOX fuels are being tested in the
US but are currently being produced elsewhere
— Facility using weapons Pu is being built at SRS
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MOX Fuel
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Sol-Gel/Sphere-Pac Fabrication

» Used to prepare oxide fuels (U and MOX)
without mixing powders, grinding, and dust

* |nvolves two steps:

— Gelation: form kernels of U, Pu, and/or Th oxides
by forming spheres
« Based on ammonia precipitation of hydrated heavy metal

oxides
« 30, 300, and 1200um optimal for Sphere-Pac (85% T.D.)

« External gelation seems to be the current preference
— Spheres are then washed and dried at ~200C

— Sphere-Pac: Calcine and then sinter the spheres
and load them into clad tubes 22



Sol-Gel/Sphere-Pac Fabrication
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Metal Fuel Fabrication

Begin with a furnace containing a molten
mixture of actinides, some fission products, and
alloying constituents

Make a mold having an array of quartz tubes
Insert mold in furnace, seal, and evacuate

Lower mold into melt and increase pressure to
force metal melt into tubes

Raise mold, cool, break to yield metal fuel
“pellets” ~0.5m long.

Insert in metal clad as with oxide fuels
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| Metl Fuel Fabrication




Fabrication Scrap Recycle

 All fabrication processes internally recycle off-
specification fuel

— Essentially dissolution and U/Pu/MOX purification
steps used in a reprocessing plant

— Off-spec metal fuels simply go back into the melt
furnace or electrorefiner
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Graphite-Based Fuels



HTGR Prismatic Fuel
Dimensions: hexagonal, H=0.8m, 0.36m (flats)
Weight: 5-7 kgU, 5.5-7.5 kg UO,

— Hardware 126 kg C (mostly graphite), 4 kg SiC
~1000 blocks for 600 MW(t) reactor

Fuel element array: 210 on a triangular pitch
— 108 Coolant channels

Fuel element size: 1.3 cm OD, H=0.8m

— Contains 14-15 “compacts” with 350-500um TRISO
particles

Enrichment: 8-20%
May have separate B,C burnable poison rod$



HTGR Prismatic Fuel
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HTGR Prismatic Fuel
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Pebble Bed Reactor Fuel
Dimensions: Spherical, D= 6.0 cm
Weight: 9g U, 10 g UO,
— “Hardware” 194 g C (mostly graphite), ~6 g SiC
~360,000 pebbles for 400 MW(t) reactor
Fuel element array: random pile

Fuel element size:
— 900um TRISO particle
—~15,000 particles per pebble

Enrichment: 7-10%
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Pebble Bed Reactor Fuel
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Pebble Bed Reactor
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Graphite Fuel Fabrication



Graphite Fuel Fabrication
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Spent Fuel Characteristics



Effects of Neutron Irradiation

* Elemental and isotopic composition changes

— Actinides fission to produce energy
* Rule-of-thumb: Fissioning 1% of actinides = 10 GWd/MT
 Fission Products produced in amounts equal to actinides
destroyed
— Irradiation produces neutron capture products
 Actinides: U-236, Np, Pu, Am, Cm, U-233

« Hardware and fuel matrix: Activation products
— Maijor constituents yield °3Zr, 6°Co, etc.
— Important trace contaminants: U (transuranics), Li (°*H), N ('4C)

* Physical changes: fuel swelling/cracking, clad
embrittlement, fission gas release to plenum
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How much burnup?

PWRs/BWRs
— Now 40-50 GWd/MTHM

— Climbing but enrichment
challenges

Fast reactors

— Hope for 100+
GWd/MTHM

» Graphite-fueled reactors

— Hope for 100+
GWd/MTHM
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What are the impacts?

 Complex mix of elements to be considered in
separations (~entire periodic table)

* Greatly increased radioactivity
— Gamma-rays/x-rays
— Neutrons: spontaneous fission and (a,n)
— Alpha (helium nucleus)
— Beta (electron)

* Impacts

— Penetrating radiation — need radiation shielding
— Particles — material damage
— Decay heat — provisions for heat removal 39



Decay Heat, PWR, 33 GWd/MT
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Backup Slides



Pressurized Water Reactor
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Boiling Water Reactor
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Sodium-Cooled Fast Reactor
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Very-High-Temperature Reactor
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Gas-Cooled Fast Reactor
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Lead-Cooled Fast Reactor
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Molten Salt Reactor
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Molten Salt Reactor Fuel




Supercritical-\WWater-Cooled Reactor

Supercritical-Water-Cooled Reactor
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Pebble-Bed Modular Reactor
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Canada Deuterium-Uranium Reactor
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CANDU Calandria Schematic
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CANDU Calandria Photo




CANDU Fuel Assembly
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